
wizPROF
havo 4 \& 5
vwo $3,4,5$ \& 6

results and awards at school mid-May

15th April the explanations will be on the website
you may use 75 minutes the website

20th March the answers will be on
calculator not allowed
scrap paper is allowed
$z \times$ ○ため
Zwijsen
www.zwijsen.nl

www.e-nemo.nl GETAL\& RUIMTE
www.getalenruimte.epn.nl

this Texas

INSTRUMENTS www.education.ti.com

keep on playing
SMART
GAMES

www.smart.be

Reken
zeker
www.rekenzeker.nl

Sampars

 www.sanderspuzzelboeken.nlSchoolsupport
www.schoolsupport.nl
-ID Premiums \qquad www.idpremiums.nl
www.ru.nl
(Nz
uItGEVERIJ NIEUWEZIJDS www.nieuwezijds.nl
Bix ㅇํ웅 platform
:aidi wiskunde nederland www.platvormwiskunde.nl

www.zozitdat.nl
enksport

1. $11,11-1,111=$
A. 9,009
B. 9,0909
C. 9,99
D. 9,999
E. 10
2. A cuboid consists of four pieces of four blocks each. Each piece has its own colour. Which one is the white piece?

A.

B.

c.

D.

E.

3. When you divide the numbers 144 and 220 by the same positive number the remainder is 11 in both cases. Which number did you divide by?
A. 7
B. 11
C. 15
D. 19
E. 38
4. Anna sends Bart a message coded as follows:

Each letter is represented by a number: $A=01, B=02, C=03, \ldots, Z=26$.
Then every number is replaced by the outcome of $2 x$ number +9 . The sequence of outcomes is sent to Bart.
He received the sequence $25,39,19,38$ and wants to decipher the sequence.
Which message does Bart find?
A. HEMD
B. HOED
C. HOOP
D. NOOD
E. None: Anna made a mistake
5. The sum of the digits of a seven-digit number is 6 .

What is the product of the digits?
A. 0
B. 1
C. 6
D. 7
E. 42
6. On each of the four walls of a room a clock is hanging, but none of them shows the exact time. The first clock is off by 2 minutes, the second clock by 3 minutes, the third by 4 minutes and the fourth by 5 minutes.
At a certain moment, watching all four clocks, Ismael sees the times 6 to 3,3 to 3,2 past 3 and 3 past 3 . What is the time then?
A. $2: 55$
B. 2:56
C. $2: 57$
D. 2:58
E. 2:59
7. Square $A B C E$ has sides of 4 cm .

Triangle $C D E$ and square $A B C E$ have equal area.
How many cm is point D from the base line?

A. $(4+2 \sqrt{3})$
B. 8
C. 12
D. $10 \sqrt{2}$
E. That depends on the position of D.
8. The arms of the right angle of a right-angled triangle are 6 and 8 cm long. K, L and M are the midpoints of the sides. How many cm is the perimeter of triangle $K L M$?
A. 10
B. 12
C. 15
D. 20
E. 24
9. $\quad M$ and N are the midpoints of the equal sides of an isosceles triangle.

The areas of three parts are in the picture alongside.
What is the area of the part with the question mark?

A. 3
B. 4
C. 5
D. 6
E. 7
10. A quadrilateral has sides of length 1 and 4 , the lengths of the other two sides are unknown.

The quadrilateral is divided into two isosceles triangles by one of its diagonals. This diagonal has length 2.
What is the perimeter of the quadrilateral?
A. 9
B. 10
C. 11
D. 12
E. 13
11. If Luke stands on a table and Danny stands on the floor then Luke rises 80 cm above Danny.

If Danny stands on the same table and Luke stands on the floor then Danny rises one metre above Luke. What is the height of the table in cm ?
A. 20
B. 80
C. 90
D. 100
E. 120
12. Julia and Emma are playing a game. If Emma wins, Julia has to pay her 2 euros.

If Julia wins, Emma has to pay her 3 euros.
After playing thirty games, both girls have the same amount of money they started with. How many times did Julia win?
A. 6
B. 12
C. 18
D. 24
E. 30
13. A four-digit number has a 3 on the position of the hundreds. The sum of the other digits is 3 as well. How many such numbers are there?
A. 2
B. 3 .
C. 4
D. 5
E. 6
14. Three girls are doing a running contest. Four spectators make a prediction each.

The first one : "Lisa or Sophie will win."
The second one: "If Sophie comes second, then Rachida wins."
The third one: "If Sophie comes third, then Lisa will not win."
The fourth one: "Sophie or Rachida will come second."
After the run all predictions prove to be true.
In which order did the girls finish?
A. Lisa, Sophie, Rachida
B. Lisa, Rachida, Sophie
C. Rachida, Sophie, Lisa
D. Sophie, Lisa, Rachida
E. Sophie, Rachida, Lisa
15. The number $2^{59} \cdot 3^{4} \cdot 5^{53}$ ends in a number of zeros.

What is the last digit preceding these zeros?
A. 1
B. 2
C. 4
D. 6
E. 9
16. We have a list of consecutive natural numbers.

The list starts with 1 . So 1, 2, 3, etcetera. In total the list has 231 digits.
What is the last number on the list?
A. 111
B. 113
C. 115
D. 116
E. 117
17. A jeweller has 12 pieces of necklace of two links.

He wants to make one big necklace out of them.
Therefore he has to open some of the links (and close them again later) What is the least possible number of links he has to open?

A. 8
B. 9
C. 10
D. 11
E. 12
18. In a rectangle an "equilateral triangle" of tangent circles is drawn.

The long side of the rectangle is 6 cm .
How many cm is the distance between the grey circles?
A. 1
B. $\sqrt{2}$
C. $2 \sqrt{3}-2$
D. $\pi / 2$
E. 2

19. Alongside you see two right-angled triangles and a semicircle. The larger right-angled triangle has sides of 5, 12 and 13. What is the radius of this circle?

A. $\frac{7}{3}$
B. $\frac{10}{3}$
C. 4
D. $\frac{13}{3}$
E. $\frac{17}{3}$

12
20. The figure alongside consists of a square of side 4 cm , a square of side 5 cm , a triangle of area $8 \mathrm{~cm}^{2}$ and a grey parallelogram.
How many cm^{2} is the area of the grey parallelogram?
A. 15
B. 16
C. 18
D. 20
E. 21

21. In each of the boxes a number from 1 through 9 is being written. The sums of the rows must be the same and the sums of the columns must be the same as well.
What number should be in the box with the question mark?

A. 1
B. 4
C. 6
D. 8
E. 9
22. Five lamps are all switched off.

Every time Ismael turns the switch of a lamp, Lisa turns the switch of one of the other lamps.
Ten times Ismael turns a switch.
What can be said about the lamps?
A. The lamps cannot be all on at the same time.
B. All lamps must be on.
C. The lamps cannot be all off at the same time.
D. All lamps must be off.
E. None of these four possibilities is correct.
23. A, B, C, D, E, F, G and H are, in order, the vertices of an regular octagon.

Choose one of the vertices D, E, F and G at random and draw the line segment that connects this point to A.
Next again choose at random one of the same four vertices and connect this to B.
What is the probability that you divided the octagon into exactly three areas?
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{3}{8}$
D. $\frac{1}{2}$
E. $\frac{5}{8}$
24. For certain positive integers m and k is $2012=m^{m}\left(m^{k}-k\right)$.

Which number is k ?
A. 2
B. 3
C. 4
D. 9
E. 11
25. In a table of 15 rows the numbers 1 through 120 are written as in the picture. Add the numbers per column (top down).
Which column, counting from the left, has the largest sum?
A. 1^{e}
B. 5^{e}
C. 7^{e}
D. 10^{e}
D. 10^{e}
E. 13^{e}
26. A rectangular piece of paper $A B C D$ of 4 by 16 cm is being folded along line $M N$ such that point C will be on point A. How many cm^{2} is the area of pentagon $A B N M D$?
A. 35
B. 37
C. 42
D. 47
E. 57

1					
2	3				
4	5	6			
7	8	9	10		
11	12	13	14	15	

27. For every three-digit number you calculate the product of its digits. Then you add up all products. What is the outcome?
A. 45
B. 45^{2}
C. 45^{3}
D. 2^{45}
E. 3^{45}
28. Train G passes a signal box in 8 seconds. Train H passes the signal box in 12 seconds in the opposite direction.

Trains G and H will pass each other in 9 seconds.
Which statement is true?
A. Train G is twice as long as train H .
B. Train G is one and a half times as long as train H .
C. Train G is as long as train H .
D. Train G is half as long as train H .
E. You cannot tell the ratio of the lengths of trains G and H.
29. We call a natural number a funny number if it is the smallest of all numbers that have the same sum of their digits.

For example: 29 is funny, because it is the smallest number of which the sum of its digits is 11.
We add up all funny three-digit numbers.
What is the outcome?
A. 4991
B. 5091
C. 5191
D. 5291
E. 5391
30. Alongside you see a game board. The game starts with placing a pawn on S (Start). With each move the pawn is moved along one line segment. As soon as the pawn arrives at F (Finish), the game is over. The aim is to get the pawn from S to F in exactly 13 moves. In how many ways is that possible?

A. 12
B. 32
C. 64
D. 144
E. 1024

